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A Convex Analysis Framework for Blind
Separation of Non-Negative Sources

Tsung-Han Chan, Wing-Kin Ma, Member, IEEE, Chong-Yung Chi, Senior Member, IEEE, and Yue Wang

Abstract—This paper presents a new framework for blind
source separation (BSS) of non-negative source signals. The pro-
posed framework, referred herein to as convex analysis of mixtures
of non-negative sources (CAMNS), is deterministic requiring no
source independence assumption, the entrenched premise in many
existing (usually statistical) BSS frameworks. The development is
based on a special assumption called local dominance. It is a good
assumption for source signals exhibiting sparsity or high contrast,
and thus is considered realistic to many real-world problems such
as multichannel biomedical imaging. Under local dominance and
several standard assumptions, we apply convex analysis to estab-
lish a new BSS criterion, which states that the source signals can
be perfectly identified (in a blind fashion) by finding the extreme
points of an observation-constructed polyhedral set. Methods for
fulfilling the CAMNS criterion are also derived, using either linear
programming or simplex geometry. Simulation results on several
data sets are presented to demonstrate the efficacy of the proposed
method over several other reported BSS methods.

Index Terms—Blind separation, convex analysis criterion,
convex optimization, linear program, non-negative sources, sim-
plex geometry.

I. INTRODUCTION

R ECENTLY there has been much interest in blind sep-
aration of non-negative source signals [1], [2], referred

herein to as non-negative blind source separation (nBSS). There
are many applications where the sources to be separated are
non-negative by nature; for example, in analytical chemistry
[3], [4], hyperspectral imaging [5], and biomedical imaging [6].
How to cleverly exploit the non-negative signal characteristic in
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nBSS has been an intriguing subject, leading to numerous nBSS
alternatives being proposed [7]–[11].

One major class of nBSS methods utilizes the statistical
property that the sources are mutually uncorrelated or inde-
pendent, supposing that the sources do satisfy that property.
Methods falling in this class include second-order blind identi-
fication (SOBI) [12], fast fixed-point algorithm for independent
component analysis (ICA) [13], non-negative ICA (nICA) [7],
stochastic non-negative ICA (SNICA) [8], and Bayesian posi-
tive source separation (BPSS) [9], to name a few. SOBI and fast
ICA were originally developed for more general blind source
separation (BSS) problems where signals can be negative. The
two methods can be directly applied to nBSS, but it has been
reported that their separated signals may have negative values
especially in the presence of finite sample effects [4], [14].
nICA takes source non-negativity into account, and is shown to
provide perfect separation when the sources have nonvanishing
density around zero (which is also called the well-grounded
condition). SNICA uses a simulated annealing algorithm for
extracting non-negative sources under the minimum mutual
information criterion. BPSS also uses source non-negativity. It
applies Bayesian estimation with both the sources and mixing
matrix being assigned Gamma distribution priors.

Another class of nBSS methods is deterministic requiring
no assumption on source independence or zero correlations.
Roughly speaking, these methods explicitly exploit source
non-negativity or even mixing matrix non-negativity, with an
attempt to achieve some kind of least square criterion. Alter-
nating least squares (ALS) [10], [15] deals with a sequence
of least squares problems where non-negativity constraints on
either the sources or mixing matrix are imposed. Non-negative
matrix factorization (NMF) [11] decomposes the observation
matrix as a product of two non-negative matrices, one serving
as the estimate of the sources while another the mixing matrix.
NMF is not a unique decomposition, which may result in inde-
terminacy of the sources and mixing matrix. To overcome this
problem, a sparse constraint on the sources has been proposed
[16].

In this paper, we propose a new nBSS framework, known as
convex analysis of mixtures of non-negative sources (CAMNS).
Convex analysis and optimization techniques have drawn con-
siderable attention in signal processing, serving as powerful
tools for various topics such as communications [17]–[22],
array signal processing [23], and sensor networks [24]. Apart
from using source non-negativity, CAMNS adopts a special
deterministic assumption called local dominance. This assump-
tion was initially proposed to capture the sparse characteristics
of biomedical images [25], [26], but we found it a good assump-
tion or approximation for high contrast images such as human
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portraits, as well. Under the local dominant assumption and
some standard nBSS assumptions, we show using convex anal-
ysis that the true source signals serve as the extreme points of
some observation-constructed polyhedral set. This geometrical
discovery is not only surprising but important, since it provides
a novel nBSS criterion that guarantees perfect blind separa-
tion. To practically realize CAMNS, we derive extreme-point
finding algorithms using either linear programming or simplex
geometry. As we will see by simulations, the blind separation
performance of the CAMNS algorithms is promising even in
the presence of strongly correlated sources.

We should stress that the proposed CAMNS framework is de-
terministic, but it is conceptually different from the other ex-
isting deterministic frameworks such as NMF. In particular, the
idea of using convex analysis to establish nBSS criterion cannot
be found in the other frameworks. Moreover, CAMNS does not
require mixing matrix non-negativity while NMF requires. The
closest match to CAMNS would be non-negative least corre-
lated component analysis (nLCA) [25], [26], a concurrent de-
velopment that also exploits the local dominance assumption.
Nevertheless, convex analysis is not involved in nLCA.

CAMNS exploits the signal geometry arising from local dom-
inance, using convex analysis and optimization. Such an ex-
ploration is reminiscent of that in BSS of magnitude bounded
sources (BSS-MBS) [27]–[29], the latter of which utilizes signal
geometry due to signal boundedness. In [27], Prieto et al. use a
neural learning algorithm to determine the vertices of an obser-
vation space generated by MBS. Erdogan [28] proposes an in-
finity norm optimization problem in his endeavor of BSS-MBS,
and shows that the optimal solution of that problem can re-
sult in perfect signal separation. In [29], Vrins et al. develop a
BSS-MBS method by maximizing a range-based contrast. The
range-based contrast is shown to be discriminant, i.e., every
local maxima leads to perfect separation of one source.

The paper is organized as follows. In Section II, the problem
statement is given. In Section III, we review some key concepts
of convex analysis, which would be useful for understanding of
the mathematical derivations that follow. The new BSS criterion
for separating non-negative sources is developed in Section IV.
We show how to use linear programs (LPs) to practically achieve
the new criterion in Section V. Section VI studies a geometric
alternative to the LP method. Finally, in Section VII, we use sim-
ulations to evaluate the performance of the proposed methods as
well as some other existing nBSS methods.

II. PROBLEM STATEMENT AND ASSUMPTIONS

For ease of later use, let us define the following notations.

, , Set of real numbers, -vectors,
matrices.

, , Set of non-negative real numbers,
-vectors, matrices.

All one vector.

identity matrix.

Unit vector with the th entry being
equal to 1.

Componentwise inequality.

Euclidean norm.
Gaussian distribution with mean and
covariance .

The scenario under consideration is that of linear instanta-
neous mixtures. The signal model is

(1)

where is the input or source
vector sequence with denoting the input dimension,

is the output or observation
vector sequence with denoting the output dimension,

is the mixing matrix describing the input-output
relation, and is the sequence (or data) length and we assume

. Note that (1) can be rewritten as

(2)

where is the th element of ,
is a vector representing the th source signal and

is a vector representing the th observed
signal.

In BSS, the problem is to extract without information of
. The BSS framework to be proposed is based on the following

assumptions.
A1) All are componentwise non-negative; i.e., for each ,

.
A2) Each source signal vector is local dominant, in the fol-

lowing sense: For each , there exists an
(unknown) index such that and ,

. (This means that for each source there is at least
one at which the source dominates.)

A3) The mixing matrix has unit row sum; i.e., for all
,

(3)

A4) and is of full column rank.
Let us discuss the practicality of A1)–A4). Assumption A1) is

true in image analysis [5], [6] where image intensities are often
represented by non-negative numbers. Assumption A2) is spe-
cial and instrumental to the development that ensues. It may be
completely satisfied or serve as a good approximation when the
source signals are sparse (or contain many zeros). In brain mag-
netic resonance imaging (MRI), for instance, the nonoverlap-
ping region of the spatial distribution of a fast perfusion and a
slow perfusion source images [6] can be higher than 95%. It may
also be appropriate to assume A2) when the source signals ex-
hibit high contrast. Assumption A4) is a standard assumption in
BSS. Assumption A3) is automatically satisfied in MRI due to
the partial volume effect [26], and in hyperspectral images due
to the full additivity condition [5]. When A3) is not satisfied,
the following idea [26] can be used. Suppose that and
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Fig. 1. Example of 3-D signal space geometry for N = 3.

, and consider the following normalized observa-
tion vectors:

(4)

By letting and , we obtain
a BSS problem formulation which is in the
same form as the original signal model in (2). It is easy to show
that the new mixing matrix, denoted by , has unit row sum. In
addition, the rank of is the same as that of . To show this,
we notice that

(5)

where and
. Since and are of full

rank, we have .

III. SOME BASIC CONCEPTS OF CONVEX ANALYSIS

We review some convex analysis concepts that will play an
important role in the ensuing development. For detailed ex-
planations of these concepts, readers are referred to [30]–[32]
which are excellent literatures in convex analysis.

Given a set of vectors , the affine hull is
defined as

(6)
An affine hull can always be represented by an affine set:

(7)

for some (nonunique) and . Here, is
assumed to be of full column rank and is the affine dimension
which must be less than . For example, if is
linearly independent, then . In that case, a legitimate

is given by
and . To give some insights, Fig. 1 pictorially illustrates
an affine hull for . We can see that it is a plane passing
through , , and .

Given a set of vectors , the convex hull is
defined as

(8)
For , a convex hull is a triangle with vertices , , and

Geometrically would be the “corner points” of its
convex hull, defined formally as the extreme points. A point

is an extreme point of if
it cannot be a nontrivial convex combination of ; i.e.,

(9)

for all , , and for any . The
set of extreme points of must be either the
full set or a subset of . In addition, if
is an affinely independent set (or
is a linearly independent set), then the set of extreme points
of is exactly . Moreover, the
boundary of is entirely constituted by all its
faces, defined by where

, for , and . A facet is a
face with . For example, in Fig. 1, we can see that
the facets are the line segments , and

.
A simplest simplex of affine dimension , or -sim-

plex is defined as the convex hull of affinely independent vec-
tors . An -simplex is formed
by extreme points, facets, and a number of faces. The
family of these simplest simplexes has the vertex-descriptions
including a point, line segment, triangle for 1, 2, and 3,
respectively.

IV. NEW NBSS CRITERION BY CONVEX ANALYSIS

Now, consider the BSS problem formulation in (2) and the
assumptions in A1)–A4). Under A3), we see that every obser-
vation is an affine combination of the true source signals

; that is

(10)

for all . This leads to an interesting ques-
tion whether the observations provide suffi-
cient information to construct the source signal affine hull

. This is indeed possible, as described in the
following lemma.

Lemma 1: Under A3) and A4), we have

(11)

The proof of Lemma 1 is given in the Appendix A. Fig. 2(a)
demonstrates geometrically the validity of Lemma 1, for the
special case of where is a line. Now
let us focus on the characterization of . It can
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Fig. 2. Geometric illustrations of CAMNS, for the special case of N = 2,M = 3, and L = 3. (a) Affine set geometry indicated by Lemma 1 and Proposition
1; (b) convex hull geometry suggested in Lemma 2.

easily be shown from A2) that is linearly indepen-
dent. Hence, has dimension and admits
a representation

(12)

for some such that .
Note that is non-unique. Without loss of generality, we
can restrict to a semi-orthogonal matrix, i.e., .
If , it is easy to obtain from the observations

; see the review in Section III. For the more general
case of , may be found by solving the following
minimization problem:

(13)

where is the projection error of onto , defined as

(14)

and

(15)

is an affine set parameterized by . The objective of (13) is
to find an -dimensional affine set that has the minimum
projection error with respect to the observations. Problem (13)
can be solved analytically as stated in the following proposition.

Proposition 1: The affine set fitting problem in (13) has a
closed-form solution

(16)

(17)

where , and the notation
denotes the eigenvector associated with the th principal

eigenvalue of the input matrix .
The proof of Proposition 1 is given in Appendix B. We should

stress that this affine set fitting provides a best affine set in terms
of minimizing the projection error. Hence, in the presence of
noisy data, it has an additional advantage of noise mitigation
for .

Recall that the source signals are non-negative. Hence, we
have for any . Let us define

(18)

(19)

which is a polyhedral set. We can show the following.
Lemma 2: Under A1) and A2), we have

(20)

The proof of Lemma 2 is given in Appendix C. Following the
simple illustrative example in Fig. 2(a), in Fig. 2(b) we verify
geometrically that is equivalent to for

. From Lemma 2, we notice an important consequence that the
set of extreme points of or is ,
since is linearly independent [due to A2)]. The
extremal property of can be seen in the illustration
in Fig. 2(b).

From the derivations above, we conclude that
Theorem 1 (nBSS Criterion by CAMNS): Under A1) to A4),

the polyhedral set

(21)

where is obtained from the observation set
by the affine set fitting procedure in Proposition
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1, has extreme points given by the true source vectors
.

Proof: Theorem 1 is a direct consequence of Lemma 1,
Proposition 1, Lemma 2, and the basic result that the extreme
points of are .

The theoretical implication of Theorem 1 is profound: It sug-
gests that the true source vectors can be perfectly identified by
finding all the extreme points of . This provides new opportu-
nities in nBSS that cannot be found in the other presently avail-
able literature to our best knowledge. Exploring these opportu-
nities in practice are the subject of Sections V–VII.

V. LINEAR PROGRAMMING METHOD FOR CAMNS

This section, as well as Section VI are dedicated to the prac-
tical implementation of CAMNS. In this section, we propose an
approach that uses linear programs (LPs) to systematically fulfil
the CAMNS criterion. Section VI will describe a geometric ap-
proach as an alternative to the LP.

Our problem as indicated in Theorem 1 is to find all the ex-
treme points of the polyhedral set in (19). In the optimiza-
tion literature this problem is known as vertex enumeration; see
[33]–[35] and the references therein. The available extreme-
point finding methods are sophisticated, requiring no assump-
tion on the extreme points. However, the complexity of those
methods would increase exponentially with the number of in-
equalities (note that is also the data length in our problem,
which is often large in practice), except for a few special cases
not applicable to this work. The notable difference of the de-
velopment here is that we exploit the characteristic that the ex-
treme points are linearly independent in the CAMNS
problem [recall that this property is a direct consequence of
A2)]. By doing so, we will establish an extreme-point finding
method (for CAMNS) whose complexity is polynomial in .

We first concentrate on identifying one extreme point from .
Consider the following linear minimization problem:

subject to (s.t.) (22)

for some arbitrarily chosen direction , where denotes
the optimal objective value of (22). Using the polyhedral struc-
tures of in (19), problem (22) can be equivalently represented
by an LP

s.t. (23)

which can be solved by readily available algorithms such as
the polynomial-time interior-point methods [36], [37]. Problem
(23) is the problem we solve in practice, but (22) leads to im-
portant implications to extreme-point search.

A fundamental result in LP theory is that , the objective
function of (22), attains the minimum at a point of the boundary
of . To provide more insights, some geometric illustrations are
given in Fig. 3. We can see that the solution of (22) may be
uniquely given by one of the extreme points [Fig. 3(a)], or
it may be any point on a face [Fig. 3(b)]. The latter case poses
a trouble to our task of identifying , but it is arguably not a

Fig. 3. Geometric interpretation of an LP.

usual situation. For instance, in the demonstration in Fig. 3(b),
must be normal to which may be unlikely to happen

for a randomly picked . With this intuition in mind, we prove
in Appendix D the following.

Lemma 3: Suppose that is randomly generated following a
distribution . Then, with probability 1, the solution of
(22) is uniquely given by for some .

The idea behind Lemma 3 is that undesired cases, such as that
in Fig. 3(b) happen with probability zero.

We may find another extreme point by solving the maximiza-
tion counterpart of (22)

s.t. (24)

Using the same derivations as above, we can show the fol-
lowing: Under the premise of Lemma 3, the solution of (24) is,
with probability 1, uniquely given by an extreme point dif-
ferent from that in (22).

Suppose that we have identified extreme points, say, without
loss of generality, . Our interest is in refining the
above LP extreme-point finding procedure such that the search
space is restricted to . To do so, consider a thin

decomposition [38] of

(25)

where is semi-unitary and is upper
triangular. Let

(26)

We assume that takes the form

(27)

for some , and consider solving (23) and (24) with such
an . Since is orthogonal to the old extreme points ,
the intuitive expectation is that (23) and (24) should both lead
to new extreme points. Interestingly, we found theoretically that
expectation is not true, but close. Consider the following lemma
which is proven in Appendix E:

Lemma 4: Suppose that , where is given
by (26) and is randomly generated following a distribution

. Then, with probability 1, at least one of the optimal
solutions of (23) and (24) is a new extreme point; i.e., for
some . The certificate of finding new extreme
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TABLE I
A SUMMARY OF THE CAMNS-LP METHOD

points is indicated by for the case of (23), and
for (24).

By repeating the above described procedures, we can identify
all the extreme points . The resultant CAMNS-LP
method is summarized in Table I.

The CAMNS-LP method in Table I is not only systematically
straightforward to apply, it is also efficient due to the maturity
of convex optimization algorithms. Using a primal-dual interior-
point method, each LP problem [or the problem in (22) or (24)]
can be solved with a worst-case complexity of

for [37]. Since the
algorithm solves LP problems in the worst case, we
infer that its worst-case complexity is .

Based on Theorem 1, Lemma 3, Lemma 4, and the above
complexity discussion, we assert that

Proposition 2: Under A1)–A4), the CAMNS-LP method in
Table I finds all the true source vectors with proba-
bility 1. It does so with a worst-case complexity of

.
Some further discussions on the algorithm complexity are

now in order.
1) In the complexity result in Proposition 1, the factor is

the theoretical worst-case number of iterations for an inte-
rior-point optimization algorithm to solve an LP. In many
LP applications the number of iterations is usually found
to grow much slower than the worst-case and seem like a
constant. Hence, in practice CAMNS-LP works more like

on average.
2) It is interesting to compare the complexity of CAMNS-LP

and some benchmarked BSS methods. nICA [7], NMF
[11], Erdogan’s BSS-MBS algorithm [28] can be verified
have complexities given by , where is the
number of iterations for each respective algorithm. To put

the comparison into context, we rewrite the CAMNS-LP
complexity as where is the number of
iterations again. Clearly CAMNS-LP has a competitive
complexity order compared to those methods.

We have provided a practical implementation of CAMNS-LP
at http://www.ee.cuhk.edu.hk/~wkma/CAMNS/CAMNS.htm.
The source codes were written in MATLAB, and are based on
a reliable convex optimization software SeDuMi [36]. Readers
are encouraged to test the codes and give us some feedback.

VI. GEOMETRIC METHOD FOR CAMNS

The CAMNS-LP method developed in the last section effec-
tively uses numerical optimization to achieve the CAMNS cri-
terion. In this section we develop analytical or semi-analytical
alternatives to achieving CAMNS, that are simple and more effi-
cient than CAMNS-LP. The methods to be proposed are for the
cases of two and three sources only, where the relatively simple
geometrical structures in the two cases are utilized.

To facilitate the development, in Section VI-A we provide an
alternate form of the CAMNS criterion. Then, Sections VI-B
and VI-C describe the geometric algorithms for two and three
sources, respectively.

A. An Alternate nBSS Criterion

Let us consider the pre-image of under the mapping
, denoted by

(28)

where is the th row of . There is a direct correspondence
between the extreme points of and , as described in the
following lemma.

Lemma 5: The polyhedral set in (28) is equivalent to an
-simplex

(29)

where each satisfies

(30)

The proof of Lemma 5 is given in Appendix F. Hence, as
an alternative to our previously proposed approach where we
find by identifying the extreme points of , we
can achieve perfect blind separation by identifying the extreme
points of . In this alternative, we are aided by a useful convex
analysis result presented as follows.

Lemma 6 (Extreme Point Validation for Polyhedra): For a
polyhedral set in form of (28), a point is an extreme
point of if and only if the following collection of vectors:

(31)

contains linearly independent vectors.
In summary, an alternate version of the BSS criterion in The-

orem 1 is given as follows.
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Theorem 2 (Alternate nBSS Criterion by CAMNS): Under
A1) to A4), the set

(32)

where are obtained from the observations
via the affine set fitting solution in Proposition 1, has extreme
points . Each extreme point corresponds to a source
signal through the relationship . The extreme
points of may be validated by the procedure in Lemma 6.

Proof: Theorem 2 directly follows from Theorem 1,
Lemma 5, and Lemma 6.

Based on Theorem 2, we propose geometric based methods
for the cases of two and three sources in Sections VI-B and
VI-C.

B. Two Sources: A Simple Closed-Form Solution

For the case of , the set is simply

(33)

By Lemma 6, is extremal if and only if

(34)

for some . From (33) we see that implies
the following two conditions:

for all such that (35)

for all such that (36)

We therefore conclude from (34), (35), and (36) that the extreme
points are given by

(37)

(38)

which are simple closed-form expressions.
The complexity of the two-source geometric method in

(37)–(38) is .

C. Three Sources: A Semianalytic Solution

For , the set is a triangle on . By exploiting the rel-
atively simple geometry of , we can locate the extreme points
very effectively. Fig. 4 shows the geometry of in this case.
We see that the boundary of is entirely constituted by three
facets , , and . They
may be represented by the following polyhedral expression:

(39a)

(39b)

(39c)

Fig. 4. Geometric illustration of F for N = 3.

Fig. 5. Illustration of the operations of the geometric extreme-point finding
algorithm for N = 3.

for some , where

(40)

Suppose that is known. Then, by Lemma 6, the three
extreme points are given by the closed form

(41a)

(41b)

(41c)

A geometric interpretation of (41) is as follows: an extreme
point is the intersection of any two of the facet-forming lines

, , and . This can also be seen in Fig. 4.
Inspired by the fact that finding all the facets is equivalent

to finding all the extreme points, we propose an extreme-point
finding heuristic in Table II. The idea behind is illustrated in
Fig. 5. In the first stage [Fig. 5(a)], we move from some interior
point over a direction until we reach the boundary. This
process helps identify one facet line, say . Similarly, by trav-
elling over the direction opposite to , we may locate another
facet line, say . The intersection of and results in
finding an extreme point . In the second stage [Fig. 5(b)], we
use the same idea to locate the last facet line , by travelling
over direction .

The proposed algorithm requires an interior point as the
starting point for facet search. Sometimes, the problem nature
allows us to determine such a point easily. For instance, if the
mixing matrix is componentwise non-negative or for
all , , then it can be verified that is interior to . When
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TABLE II
SUMMARY OF GEOMETRIC EXTREME-POINT FINDING ALGORITHM

an interior point is not known, we can find one numerically by
solving the LP

s.t. (42)

(This is known as the phase I method in optimization [30].)

TABLE III
LOCAL DOMINANCE PROXIMITY FACTORS IN THE THREE SCENARIOS

The complexity of the 3-source geometric heuristic in Table II
is .

VII. SIMULATIONS

To demonstrate the efficacy of the CAMNS-based algorithms,
four simulation results are presented here. Section VII-A is
an X-ray image example where our task is to distinguish
bone structures from soft tissue. Section VII-B considers a
benchmarked problem [2] in which the sources are faces of
three different persons. Section VII-C focuses on a challenging
scenario reminiscent of ghosting effects in photography.
Section VII-D uses Monte Carlo simulation to evaluate the per-
formance of CAMNS-based algorithms under noisy condition.
For performance comparison, we also test three existing nBSS
algorithms, namely non-negative least-correlated component
analysis (nLCA) [26], non-negative matrix factorization (NMF)
[11], non-negative independent component analysis (nICA)
[7], and Ergodan’s BSS-MBS algorithm [28].

The performance measure used in this paper is described as
follows. Let be the true multisource signal ma-
trix, and be the multisource output of a BSS
algorithm. It is well known that a BSS algorithm is inherently
subject to permutation and scaling ambiguities. We propose a
sum square error (SSE) measure for and [39], [40], given
as follows:

(43)

where , and
for is the set of all permuta-

tions of . The optimization of (43) is to adjust
the permutation such that the best match between true and
estimated signals is yielded, while the factor is to
fix the scaling ambiguity. Problem (43) is the optimal assign-
ment problem which can be efficiently solved by Hungarian
algorithm1 [41].

A. Example of : Dual-Energy Chest X-Ray
Imaging

Dual-energy chest X-ray imaging is clinically used for de-
tecting calcified granuloma, a symptom of lung nodules [42].
The diagnostic images are acquired from two stacked detectors
separated by a copper filter along which x-rays at two different
energies are passed. For visualizing the symptom of calcified
granuloma, it is necessary to separate bone structures and soft
tissue from the diagnostic images.

1A Matlab implementation is available at http://si.utia.cas.cz/Tichavsky.html.
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Fig. 6. Dual-energy chest X-ray imaging: (a) Sources, (b) observations, and the extracted sources obtained by (c) CAMNS-LP method, (d) CAMNS-geometric
method, (e) nLCA, (f) NMF, (g) nICA, and (h) Erdogan’s algorithm.

In this simulation we have two 164 164 source images, one
representing bone structure and another soft tissue. The two im-
ages can be found in [43], and they are displayed in Fig. 6(a).
Each image is represented by a source vector , by scan-
ning the image vertically from top left to bottom right (thereby

). We found that the two source signals
satisfy the local dominant assumption [or A2)] perfectly, by nu-
merical inspection. The observation vectors, or the diagnostic
images are synthetically generated using a mixing matrix

(44)

The mixed images are shown in Fig. 6(b). The separated images
of the various nBSS methods are illustrated in Fig. 6(c)–(h). By
visual inspection, the CAMNS-based methods and nLCA ap-
pear to yield the best separation among the various methods. We
also see that nICA and Erdogan’s algorithm provide reasonably
good performance. In Table III the various methods are quan-
titatively compared, using the SSE in (43). The table suggests
that the CAMNS-based methods, along side with nLCA achieve
perfect separation.

B. Example of : Human Face Separation

Three 128 128 human face images, taken from the bench-
marks in [2], are used to generate three observations. The mixing
matrix is

(45)

In this example, the local dominant assumption is not perfectly
satisfied. To shed some light into this, we propose a measure
called the local dominance proximity factor (LDPF) of the th
source, defined as follows:

(46)

When , we have the th source satisfying the local dom-
inant assumption perfectly. The values of ’s in this example
are shown in Table IV, where we see that the LDPFs of the three
sources are strong but not infinite.



CHAN et al.: A CONVEX ANALYSIS FRAMEWORK FOR BLIND SEPARATION OF NON-NEGATIVE SOURCES 5129

TABLE IV
SSES OF THE VARIOUS NBSS METHODS IN THE THREE SCENARIOS

Fig. 7. Human face separation: (a) sources, (b) observations, and the extracted sources obtained by (c) CAMNS-LP method, (d) CAMNS-geometric method,
(e) nLCA, (f) NMF, (g) nICA, and (h) Erdogan’s algorithm.

Fig. 7 shows the separated images of the various nBSS
methods. We see that the CAMNS-based methods and nLCA
provide good separation, despite the fact that the local domi-
nance assumption is not perfectly satisfied. This result indicates

that the CAMNS-based methods have some robustness against
violation of local dominance. Moreover, nICA and Erdogan’s
algorithm work poorly due to the violation of the assumption of
uncorrelated sources. The SSE performance of the various
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Fig. 8. Ghosting reduction: (a) sources, (b) observations and the extracted sources obtained by (c) CAMNS-LP method, (d) nLCA, (e) NMF, (f) nICA, and
(g) Erdogan’s algorithm.

methods is given in Table III, where we have two observations.
First, the CAMNS-LP method yields the best performance

among all the methods under test. Second, the performance of
the LP method is better than that of the CAMNS-geometric
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Fig. 9. Performance evaluation of the CAMNS-based methods, nLCA, NMF,
nICA, and Erdogan’s method for the human face images experiment under noisy
condition.

method. The latter suggests that the LP method is more robust
than the geometric method, when local dominance is not
exactly satisfied. This result will be further confirmed in the
Monte Carlo simulation in Section VII-D.

C. Example of : Ghosting Effect

We take a 285 285 Lena image from [2] as one source
and then shift it diagonally to create three more sources; see
Fig. 8(a). Apparently, these sources are strongly correlated.
Even worse, their LDPFs, shown in Table IV are not too sat-
isfactory compared to the previous two examples. The mixing
matrix is

(47)

Fig. 8(b) displays the observations, where the mixing effect is
reminiscent of the ghosting effect in analog televisions. The
image separation results are illustrated in Fig. 8(c)–(g). Clearly,
only the CAMNS-LP method and nLCA provide sufficiently
good mitigation of the “ghosts.” This result once again suggests
that the CAMNS-based methods (as well as nLCA) is not too
sensitive to the effect of local dominance violation. Regarding
the comparison of the CAMNS-LP method and nLCA, one may
find that the nLCA separated images have some ghosting resid-
uals, upon very careful visual inspection. As for the proposed
method, we argue that the residuals are harder to notice. More-
over, our numerical inspection found a problem that the nLCA
signal outputs have negative values sometimes. For this reason,
we see in Table III that the SSE of nLCA is about 10 dB larger
than that of the CAMNS-LP method.

D. Example of , : Noisy Environment

We use Monte Carlo simulation to test the performance of
the various methods when noise is present. The three face im-
ages in Fig. 7(a) were used to generate six noisy observations.
The noise is independently and identically distributed (i.i.d.),
following a Gaussian distribution with zero mean and variance

. To maintain non-negativity of the observations in the sim-
ulation, we force the negative noisy observations to zero. We
performed 100 independent runs. At each run the mixing ma-
trix was i.i.d. uniformly generated on and then each row is
normalized to 1 to maintain . The average errors for
different SNRs (defined here as )
are shown in Fig. 9. One can see that the CAMNS-LP method
performs better than the other methods.

VIII. CONCLUSION

We have developed a convex analysis based framework for
non-negative blind source separation. The core of the frame-
work is a new nBSS criterion, which guarantees perfect separa-
tion under some assumptions [see – ] that are realistic
in many applications such as multichannel biomedical imaging.
To practically realize this result, we have proposed a systematic
LP-based method for fulfilling the criterion. We should mention
a side benefit that the LP method deals with linear optimiza-
tion that can be solved efficiently and does not suffer from local
minima. Moreover, we have used simplex geometry to estab-
lish a computationally very cheap alternative to the LP method.
Our current development has led to two simple geometric al-
gorithms, for two and three sources respectively. Future direc-
tion should consider extension of the geometric approach to four
sources and beyond. We anticipate that the extension would be
increasingly complex in a combinatorial manner. By contrast,
the comparatively more expensive LP method does not have
such a trouble per se, and is applicable to any number of sources.

We have also performed extensive simulations to evaluate the
separation performance of the CAMNS-based methods, under
several scenarios such as x-ray, human portraits, and ghosting.
The results indicate that the LP method offers the best perfor-
mance among the various methods under test.

APPENDIX

A. Proof of Lemma 1

Any can be represented by

(48)

where , . Substituting (2) into (48), we get

(49)

where for , or equivalently

(50)

Since has unit row sum [A3)], we have

(51)

This implies that , and as a result it follows from (49)
that .

On the other hand, any can be repre-
sented by (49) for . Since has full column rank
[A4)], there always exist a such that (50) holds. Substituting
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(50) into (49) yields (48). Since (51) implies that , we
conclude that .

B. Proof of Proposition 1

As a basic result in least squares, each projection error in (13)

(52)

has a closed form

(53)

where is the orthogonal complement projection of . Using
(53), we can therefore rewrite the affine set fitting problem [in
(13)] as

(54)

where

(55)

The inner minimization problem in (54) is an unconstrained
convex quadratic program, and it can be easily verified that

is an optimal solution to the inner min-
imization problem. By substituting this optimal into (54) and
by letting , problem (54) can be re-
duced to

(56)

When , the projection matrix can be simpli-
fied to . Subsequently (56) can be further reduced to

(57)

An optimal solution of (57) is known to be the principal
eigenvector matrix [44].

C. Proof of Lemma 2

Assume that :

From A2), it follows that , . Since
, we must have , . Therefore,

lies in . On the other hand, assume that
, i.e.,

implying that . From A1), we have
and subsequently . This completes the proof for

(20).

D. Proof of Lemma 3

Any point in can be equivalently rep-
resented by , where and . Ap-
plying this result to (22), problem (22) can be reformulated as

s.t. (58)

where . We assume without loss of generality that
. If , then it is easy

to verify that the optimal solution to (58) is uniquely given by
. In its counterpart in (22), this translates into .

But when and
for some , the solution of (58) is not unique. In essence, the
latter case can be shown to have a solution set

(59)

We now prove that the nonunique solution case happens with
probability zero. Suppose that for some , which
means that

(60)

Let . Apparently, follows a distribu-
tion . Since , the probability

is of measure zero. This, in turn,
implies that holds with probability 1.

E. Proof of Lemma 4

The approach to proving Lemma 4 is similar to that in
Lemma 3. Let

(61)

for which we have for . It can be shown that

(62)

holds with probability 1, as long as is linearly in-
dependent. Problems (22) and (24) are, respectively, equivalent
to

s.t. (63)

s.t. (64)

Assuming (62), we have three distinct cases to consider: C1)
, , C2) , , and C3) ,

.
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For C2), we can see the following: Problem (63) has a unique
optimal solution [and in its counterpart
in (22)], attaining an optimal value . Problem
(64) has a unique optimal solution [and in its
counterpart in (24)], attaining an optimal value . In
other words, both (63) and (64) lead to finding of new extreme
points. For (C1), it is still true that (63) finds a new extreme point
with . However, problem (64) is shown to have a solution
set

(65)

which contains convex combinations of the old extreme points,
and the optimal value is . A similar condition happens
with C3), where (64) finds a new extreme point with
while (63) does not with .

F. Proof of Lemma 5

Equation (28) can also be expressed as

Thus, every satisfies

(66)

for some . Since has full column rank, (66)
can be re-expressed as

(67)

where (or ). Equa-
tion (67) implies that . Now, assume
that are affinely dependent, i.e., there must exist
an extreme point where . One
then has where
which implies are affinely dependent (contradic-
tion). Thus, the set is an -simplex.
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